Fatty Acid Oxidation Syndrome Panel

SEQmethod-seq-icon Our Sequence Analysis is based on a proprietary targeted sequencing method OS-Seq™ and offers panels targeted for genes associated with certain phenotypes. A standard way to analyze NGS data for finding the genetic cause for Mendelian disorders. Results in 21 days. DEL/DUPmethod-dup-icon Targeted Del/Dup (CNV) analysis is used to detect bigger disease causing deletions or duplications from the disease-associated genes. Results in 21 days. PLUSmethod-plus-icon Plus Analysis combines Sequence + Del/Dup (CNV) Analysis providing increased diagnostic yield in certain clinical conditions, where the underlying genetic defect may be detectable by either of the analysis methods. Results in 21 days.

Test code: ME1701

The Blueprint Genetics Fatty Acid Oxidation Syndrome Panel is a 25 gene test for genetic diagnostics of patients with clinical suspicion of disorder of fatty acid metabolism.

Typically, fatty acid oxidation deficiencies are inherited in autosomal recessive manner. This Panel is included in the Comprehensive Metabolism Panel.

About Fatty Acid Oxidation Syndrome

Fatty acid oxidation syndromes are a broad group of disorders caused by defects in the enzymes needed to oxidize fatty acids. This results in inability to use fatty acids as a source of energy when the level of primary energy source glucose is low during prolonged fasting and periods of higher energy demands. If left untreated, these conditions result in hypoketonic hypoglycemia and a buildup of fatty acids in internal organs. Hepatomegaly and liver disease may be present during an acute episode that easily progress to koma and death. Other symptoms include developmental delay, seizures, hypotonia and feeding difficulties. Once diagnosed the prognosis is excellent if dietary recommendations are followed. Often specific deficiencies within the broader group of fatty acid oxidation syndromes are each caused by mutations in one specific gene. Mutations in these causative genes therefore often explain very high percentage of each specific deficiency. Typically these numbers are 95%-100%. The estimated combined prevalence for fatty acid oxidative deficiencies is 1-2:10 000 newborns. The most common of these diseases is medium-chain-acyl-CoA dehydrogenase (MCAD) deficiency caused by mutation in ACADM gene.

Availability

Results in 3-4 weeks.

Genes in the Fatty Acid Oxidation Syndrome Panel and their clinical significance
GeneAssociated phenotypesInheritanceClinVarHGMD
ACAA1Pseudo-Zellweger syndromeAD/AR
ACAD9Acyl-CoA dehydrogenase family, deficiencyAR2140
ACADLLong chain acyl-CoA dehydrogenase deficiencyAD/AR2
ACADMAcyl-CoA dehydrogenase, medium chain, deficiencyAR59163
ACADSAcyl-CoA dehydrogenase, short-chain, deficiencyAR2975
ACADVLAcyl-CoA dehydrogenase, very long chain, deficiencyAR53260
ALDH5A1Succinic semialdehyde dehydrogenase deficiencyAR867
CPT1ACarnitine palmitoyltransferase deficiencyAR3443
CPT2Carnitine palmitoyltransferase II deficiencyAR36102
ECHS1Mitochondrial short-chain enoyl-CoA hydratase 1 deficiencyAR728
ETFAGlutaric aciduria, Multiple acyl-CoA dehydrogenase deficiencyAR728
ETFBGlutaric aciduria, Multiple acyl-CoA dehydrogenase deficiencyAR713
ETFDHGlutaric aciduria, Multiple acyl-CoA dehydrogenase deficiencyAR36168
GLUD1*Hyperammonemia-hyperinsulinism, Hyperinsulinemic hypoglycemiaAD/AR1437
HADH3-hydroxyacyl-CoA dehydrogenase deficiencyAR825
HADHATrifunctional protein deficiency, Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiencyAR2367
HADHBTrifunctional protein deficiencyAR1055
HMGCL3-hydroxy-3-methylglutaryl-CoA lyase deficiencyAR851
HMGCS23-hydroxy-3-methylglutaryl-CoA synthase 2 deficiencyAR826
HSD17B1017-beta-hydroxysteroid dehydrogenase X deficiency, Mental retardation, syndromicXL812
LPIN1Myoglobinuria, acute, recurrentAR629
PPARGInsulin resistance, Lipodystrophy, familial, partialAD/Digenic (Severe digenic insulin resistance can be due to digenic mutations in PPP1R3A and PPARG)1242
SLC22A5Carnitine deficiency, systemic primaryAR58118
SLC25A20Carnitine-acylcarnitine translocase deficiencyAR1241
TAZ3-Methylglutaconic aciduria, (Barth syndrome)XL35146
  • * Some regions of the gene are duplicated in the genome leading to limited sensitivity within the regions. Thus, low-quality variants are filtered out from the duplicated regions and only high-quality variants confirmed by other methods are reported out. Read more.

Gene, refers to HGNC approved gene symbol; Inheritance to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL); ClinVar, refers to a number of variants in the gene classified as pathogenic or likely pathogenic in ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/); HGMD, refers to a number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/). The list of associated (gene specific) phenotypes are generated from CDG (http://research.nhgri.nih.gov/CGD/) or Orphanet (http://www.orpha.net/) databases.

Blueprint Genetics offers a comprehensive fatty acid oxidation syndrome panel that covers classical genes associated with disorder of fatty acid metabolism. The genes are carefully selected based on the existing scientific evidence, our experience and most current mutation databases. Candidate genes are excluded from this first-line diagnostic test. The test does not recognise balanced translocations or complex inversions, and it may not detect low-level mosaicism. The test should not be used for analysis of sequence repeats or for diagnosis of disorders caused by mutations in the mitochondrial DNA.

Please see our latest validation report showing sensitivity and specificity for SNPs and indels, sequencing depth, % of the nucleotides reached at least 15x coverage etc. If the Panel is not present in the report, data will be published when the Panel becomes available for ordering. Analytical validation is a continuous process at Blueprint Genetics. Our mission is to improve the quality of the sequencing process and each modification is followed by our standardized validation process. All the Panels available for ordering have sensitivity and specificity higher than > 0.99 to detect single nucleotide polymorphisms and a high sensitivity for indels ranging 1-19 bp. The diagnostic yield varies substantially depending on the used assay, referring healthcare professional, hospital and country. Blueprint Genetics’ Plus Analysis (Seq+Del/Dup) maximizes the chance to find molecular genetic diagnosis for your patient although Sequence Analysis or Del/Dup Analysis may be cost-effective first line test if your patient’s phenotype is suggestive for a specific mutation profile. Detection limit for Del/Dup analysis varies through the genome from one to six exon Del/Dups depending on exon size, sequencing coverage and sequence content.

The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. The highest relevance in the reported variants is achieved through elimination of false positive findings based on variability data for thousands of publicly available human reference sequences and validation against our in-house curated mutation database as well as the most current and relevant human mutation databases. Reference databases currently used are the 1000 Genomes Project (http://www.1000genomes.org), the NHLBI GO Exome Sequencing Project (ESP; http://evs.gs.washington.edu/EVS), the Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org), ClinVar database of genotype-phenotype associations (http://www.ncbi.nlm.nih.gov/clinvar) and the Human Gene Mutation Database (http://www.hgmd.cf.ac.uk). The consequence of variants in coding and splice regions are estimated using the following in silico variant prediction tools: SIFT (http://sift.jcvi.org), Polyphen (http://genetics.bwh.harvard.edu/pph2/), and Mutation Taster (http://www.mutationtaster.org).

Through our online ordering and statement reporting system, Nucleus, the customer can access specific details of the analysis of the patient. This includes coverage and quality specifications and other relevant information on the analysis. This represents our mission to build fully transparent diagnostics where the customer gains easy access to crucial details of the analysis process.

In addition to our cutting-edge patented sequencing technology and proprietary bioinformatics pipeline, we also provide the customers with the best-informed clinical report on the market. Clinical interpretation requires fundamental clinical and genetic understanding. At Blueprint Genetics our geneticists and clinicians, who together evaluate the results from the sequence analysis pipeline in the context of phenotype information provided in the requisition form, prepare the clinical statement. Our goal is to provide clinically meaningful statements that are understandable for all medical professionals, even without training in genetics.

Variants reported in the statement are always classified using the Blueprint Genetics Variant Classification Scheme modified from the ACMG guidelines (Richards et al. 2015), which has been developed by evaluating existing literature, databases and with thousands of clinical cases analyzed in our laboratory. Variant classification forms the corner stone of clinical interpretation and following patient management decisions. Our statement also includes allele frequencies in reference populations and in silico predictions. We also provide PubMed IDs to the articles or submission numbers to public databases that have been used in the interpretation of the detected variants. In our conclusion, we summarize all the existing information and provide our rationale for the classification of the variant.

A final component of the analysis is the Sanger confirmation of the variants classified as likely pathogenic or pathogenic. This does not only bring confidence to the results obtained by our NGS solution but establishes the mutation specific test for family members. Sanger sequencing is also used occasionally with other variants reported in the statement. In the case of variant of uncertain significance (VUS) we do not recommend risk stratification based on the genetic finding. Furthermore, in the case VUS we do not recommend use of genetic information in patient management or genetic counseling. For some cases Blueprint Genetics offers a special free of charge service to investigate the role of identified VUS.

We constantly follow genetic literature adapting new relevant information and findings to our diagnostics. Relevant novel discoveries can be rapidly translated and adopted into our diagnostics without delay. These processes ensure that our diagnostic panels and clinical statements remain the most up-to-date on the market.

Find more info in Support
Download PDF

Full service only

Choose an analysis method

$ $ 1400
$ $ 1000
$ $ 1600

Extra services

$ 500
Total $
Order now

ICD & CPT codes

CPT codes

SEQ81479
DEL/DUP81479


ICD codes

Commonly used ICD-10 codes when ordering the Fatty Acid Oxidation Syndrome Panel

ICD-10Disease
E71.3Disorder of fatty acid metabolism

Accepted sample types

  • EDTA blood, min. 1 ml
  • Purified DNA, min. 5μg
  • Saliva (Oragene DNA OG-500 kit)

Label the sample tube with your patient’s name, date of birth and the date of sample collection.

Note that we do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue.